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In a previous paper, we have considered the weakly nonlinear interaction of a pair 
of axisymmetric lower branch Tollmien-Schlichting instabilities in cylindrical 
supersonic flows. Here the possibility that non-axisymmetric modes might also exist 
is investigated. I n  fact it is found that such modes do exist and, on the basis of linear 
theory, it appears that these modes are the most important. The non-axisymmetric 
modes are found to exist for flows around cylinders with non-dimensional radius a 
less than some critical value a,. This critical value a, is found to increase 
monotonically with the azimuthal wavenumber n of the disturbance and it is found 
that unstable modes always occur in pairs. We show that, in general, instability in 
the form of lower branch Tollmien-Schlichting waves will occur first for non- 
axisymmetric modes and that in the unstable regime, the largest growth rates 
correspond to the latter modes. 

1. Introduction 
Recent interest in the development of supersonic and hypersonic vehicles has 

stimulated research into the different instability mechanisms which might cause 
transition to turbulence in high-speed compressible flows. Here an investigation of 
the role of non-axisymmetric lower-branch Tollmien-Schlichting waves in supersonic 
flows with an axis of symmetry is investigated. Such a study is crucial for verifying 
the feasibility of these vehicles, since experimental investigations in these regimes are 
extremely expensive and difficult to carry out. 

Following the work of Smith (1979a,b) it is now well known that triple-deck 
theory provides a self-consistent asymptotic framework for the description of lower- 
branch linear and nonlinear, two- and three-dimensional Tollmien-Schlichting 
waves. Thus it is known that finite-amplitude Tollmien-Schlichting waves are 
stabilized by nonlinear effects as they cross the lower branch of the neutral curve. At 
higher disturbance amplitudes further downstream Smith & Burggraf (1985) have 
shown that a hierarchy of fully nonlinear states can be achieved. The planar 
compressible problem has been investigated using triple-deck theory by Smith 
(1989). At subsonic speeds lower-branch disturbances are essentially unchanged from 
their incompressible forms. However, at supersonic speeds only three-dimensional 
modes can be unstable and the critical angle of propagation above which instability 
can occur increases with the Mach number. At hypersonic speeds Smith (1989) has 
shown that the modes are then fully non-parallel and a quasi-parallel theory based 
on triple-deck theory fails. It can be shown that in this regime the modes have a 
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structure similar to that which describes Gortler vortices in incompressible flows (see 
for example Hall 1983). 

In a previous paper, Duck & Hall (1989), we investigated the linear and weakly 
nonlinear theory of lower-branch axisymmetric Tollmien-Schlichting instabilities in 
supersonic cylindrical flows. We found that such modes exist in pairs and that at a 
given Mach number they occur only for a body radius less than a critical value. In 
the limit of small body radius both modes have wavelength going to zero with respect 
to the usual triple-deck streamwise lengthscale. In the weakly nonlinear stage it was 
shown that, dependent on the input frequency, either mode can lead to a stable 
finite-amplitude state. 

Here we generalize the above calculation to see if non-axisymmetric modes can be 
important in the linear regime. We perturb an axisymmetric supersonic flow to three- 
dimensional disturbances with wavenumbers a and n in the streamwise and 
azimuthal directions. We show that a t  all supersonic speeds there is a finite band of 
non-dimensional body radii that can support two three-dimensional modes of the 
same azimuthal wavenumber, and that in the limit of scaled body radius tending to 
zero one mode has wavelength tending to zero whilst the other tends to infinity. Thus 
for these cylinders Tollmien-Schlichting waves with wavelengths both short and 
long compared with the usual streamwise triple-deck scale can occur. The planar 
problem has been recently studied by Smith (1989) who showed that three- 
dimensional disturbances are the most unstable over a wide range of Mach numbers. 
Indeed in the hypersonic limit Smith showed that they were the only possible type 
of unstable Tollmien-Schlichting wave. We shall show that, on the basis of linear 
theory, it is the three-dimensional modes that are also the most dangerous in 
cylindrical flows since they occur at the lowest Reynolds number and when they 
occur have the largest growth rates. 

The procedure adopted in the rest of this paper is as follows: in $ 2  we formulate 
the linear stability problem for supersonic cylindrical flows. In $ 3  we determine the 
eigenrelations for three-dimensional Tollmien-Schlichting waves around a cylinder 
with radius comparable with the upper-deck thickness. In $4 the eigenrelation is 
investigated in the limit of small and large cylinders and also in the high azimuthal 
wavenumber limit. Finally in $ 5  we describe some results and draw some conclusions. 

2. Formulation 
We shall be concerned with the linear stability of an axisymmetric boundary layer 

on a cylindrical body of radius a*, in a uniform supersonic stream of velocity Uz 
aligned with the axis of the cylinder. 

If L* denotes a typical streamwise lengthscale (for example the distance from some 
leading edge), v z  the kinematic viscosity of the fluid in the far field, then the 
Reynolds number Re is defined to be 

Re = U z  L * / v z .  (2.1) 

It is found useful to introduce a related parameter E ,  

6 = Re-;. 

In this paper the Reynolds number is taken to be large, implying 6 is small. 

(2.3) 
a* It is also assumed that - a=--  

€3L* - O(1) 
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denotes the scale of the radius of the body. This follows the scale chosen by Duck & 
Hall (1989), Kluwick, Gittler & Bodonyi (1984), and one of the scales chosen by Duck 
(1984), amongst others ; this turns out to be an important choice of body radius scale, 
with curvature terms playing a crucial role in the physics of the problem. 

The problem then takes on a triple-deck structure. The following non-dimensional 
variables are defined 

Here x*, r* and 6 are taken to be the streamwise, radial and azimuthal coordinates 
respectively at some suitable reference point on the body, and u*, v*, w* are the 
corresponding velocity components, c* denotes the speed of sound, p: the fluid 
density far from the body, p* the pressure, p z  the far-field pressure, and t* the time. 

We confine our study to the stability of the flow at a location on the body where 
the boundary-layer thickness is O(e4L*), which is thin compared with the radius of 
the body. The skin friction of the undisturbed boundary layer is then taken to be 
U*Ae4/L*, where h is some order-one parameter. The flow is taken to be parallel, a 
completely rational approximation in this context because of the small, O(e3L*), 
streamwise lengthscale under consideration (although non-parallel effects could 
become important in a nonlinear study). 

We consider first the upper deck of the triple deck, where F =  O(1). Here the 
perturbation pressure and sound speed expand as 

(2.5) p = s 2 p , ( ~ ,  F, e, q + . . . , c = M;I + e z ~ , ( x ,  F, e, q + . . . . 
M, is the Mach number of the external flow. The flow in this layer turns out to be 
completely irrotational, and may be reduced to the Prandtl-Glauert equation 
(expressed in cylindrical polar coordinates) for the pressure p,, 

1 1 
(1  - M ~ ) P , , + ~ P l T + p l f f + ~ P l s s  = 0. (2.6) 

Here subscripts with respect to variables denote partial differentiation. The solution 
of this will be deferred until the appropriate boundary conditions have been 
ascertained. We consider next the main and lower decks, which correspond to the 

The appropriate expansions in these layers take the form 

( E , ~ , m , p , p )  = E U , ~ ~ ~ , E ~ , € ~ P , R ~ ( O ) + E ~ ,  + .... (2.8b) 

Here the displacement function A and P depend on I,@, 6 whilst 0, V ,  W, P and p 
depend on x,8, fand P. In these decks curvature effects are negligible at  the level of 
approximation discussed here. The function D is in fact equal to --Pe/a and the usual 
matching condition between the main and upper decks yields P,IF,,A,. It is now 

( 1 
- 
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possible to scale out a number of the physical constants. Following Kluwick et al. 
(1984) and Duck & Hall (1989), this is achieved as follows: 

(2.9) I x = &A-:(T,/T,):x, P = &A-~~(T,/T,):Y, p = CWP, 
0 = &+T,/T,);U, Y = &A~(T,/T,)~+, w = &~;(T,/T,)%v, 

A= dA-f(T,/T,);A, CX = &h-~(T,/T,)b,, f= C&-%(T,/T,) t .  

au au au wau a2u ap 1 

at ax ay a ae ay2 ax’ 
aw aw aw waw a2w ia. 
at ax ay a ae ay2 aae’ 

-++-++-++-==-- 

-+ up+ v-+-- = __-__ 

au av i a v  
ax ay aae 
-+-+-- = 0, 

U = V = W = O  on Y = O ,  

U + Y + A ( X , O , t )  as Y+co, 

W+D/Y as Y+co, ) 

$ 
(2.10) 

If we write the solution of (2.6) symbolically as 

P = Y { A )  

then the problem is effectively closed. 

(2.11) 

3. Linear stability 
The lower deck is then linearized about the basic state by writing, for example, A 

in the form A = [d, exp i ( d +  n8-52t) + complex conjugate] so that the continuity 
and momentum equations reduce to:  

Ol(-iSZ+iaY)+8, = iaFI+Olyy, (3.1a) 

Wl(-iQ+iaY) = - - - - P ~ + W ~ ~ ~ ,  (3.lb) 
in - 
a 

in 
iaOl + Ply +- W, = 0. 

U 
(3.1 c )  

We can eliminate the pressure in the first two of these equations to give an Airy 
equation whose appropriate solution is 

(3.2) 

where (3.3) 
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Invoking, further, the boundary conditions as Y + co demands 

where 

Evaluating (3 . la ,  b)  on Y = 0, and combining yields 

(ia)iBAi'(tO) = ( i a + T  :2) P,. 

To complete this solution we require the solution from the upper deck. If we write 

p , ( v  = ~ b i t [ r ; ~ ( r )  E ,  + c.c.1, r = @A-%(T,/T,)%, (3.7) 

then the function fil which satisfies the pressure displacement law and is finite a t  
infinity is 

(assuming M ,  > 1). Finally, a non-trivial solution to (3.4), (3.6), (3.8) exists only if 
the following (dispersion) relation is satisfied : 

Notice that setting n = 0 (axisymmetric mode), and defining 

yields the following dispersion relationship : 

(3.11) 

which is the same dispersion relationship as found by Duck & Hall (1989). 

4. The dispersion relationship for a 4 1 and a >> 1 
Here we shall discuss the limiting forms of the dispersion relationship in the limits 

of either very thin or thick cylinders. We recall that axisymmetric modes always 
occur in pairs and exist for a less than some critical value, with branches having a, 
SZ tending to infinity when a + O .  Suppose then that a+O in (3.9) in such a way that 
aa + 0. From the series expansions of K,, K ,  we deduce that 

where x = Ai (s) ds, 
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so that for neutral modes we must have that 
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6, x 2.298it, Ai' ( t 0 ) / x  - l.OOli4, 

and the neutral values of a,Q then become 

a = (7) 1.001a + ..., Q = 2.298(---&) 1.001a +... . 
(4.1 a, b)  

Thus, unlike the axisymmetric problem, there are neutral solutions for a 4 1 which 
have a,sZ-+O. This is a result of some significance because it means that for thin 
cylinders non-axisymmetric modes are the most important since they will occur a t  
lower values of the Reynolds number than do the axisymmetric modes. 

However, a t  finite Reynolds numbers, where our asymptotic approach is not valid, 
we cannot say which type of mode is the most dangerous. Indeed, as is the case for 
the incompressible problem a t  finite Reynolds numbers, it is then not clear that the 
concept of a mode or critical Reynolds number is even tenable. 

In  fact there is another asymptotic solution of (3.9) available in the limit a 4 1 .  
The second mode again has aa 4 1 but I,$,l now tends to infinity. For large values of 
ltol we can replace Ai'(t,)/X by -t,{l-fSo~+...) and we again approximate 
K,(z)/Kn(z) using the series expansion of the modified Bessel function. After 
equating the dominant real and imaginary parts of (3.9) we then deduce that 

(4.2a, b)  

Thus a - a - ( H )  in this limit and since (4n-3)/(4n+ 1) increases monotonically from 
to 1 when n-t 03 it follows that the largest values of u correspond to n tending to 

infinity. It follows that the distances between the upper and lower branches of (3.9) 
for a + 0 increase with n. Thus the band of unstable wavenumbers increases with the 
azimuthal wavenumber n ;  this does not of course necessarily mean that the 
maximum growth rate will occur for n 8 1. We shall return to the latter point in the 
next section. 

Now we consider the structure of (3.9) in the limit a+ 03. First we note that if we 
let a+ co with n fixed then, if laa( 8 1, (3.9) reduces to 

which has no neutral solutions. Thus we must instead consider the double limit 
n -+ 03, a -+ co but with n/a held fixed. This means that the wavelength in the 
aximuthal direction is comparable with that in the streamwise direction. The 
asymptotic form for a modified Bessel function of large argument and order yields 

where we have assumed that (a2a2/n2) (M", - 1 )  < 1. It follows that neutral solutions 
of (3.9) again occur when 5, x -2.298it so that 

1.001 [ l--(Wm-l)~=$(l+&)+ a: ..., 



Non-axisymmetric lower-branch modes in axisymmetric supersonic f i w s  197 

or if we write /3 = n/a we obtain 

1.001 l---(W,-l) =agp1 1+, +..., L ;  I” (f) (4.3) 

which is the supersonic planar neutral dispersion relationship of Smith (1989). 
It is an easy matter to show that (3.9) has no neutral solutions for n, a % 1 with 

(azaz /nz)  (W, - 1) > 1. Thus neutral disturbances exist only for aximuthal wave- 
numbers satisfying 

n2 > a2a2(MZ, - 1).  (4.4) 
We shall discuss the above asymptotic results after describing our numerical results 
for the dispersion relationship (3.9). 

5. Results and discussion 
The dispersion relationship (3.9) was solved for the neutral state (Im {a} = Im {Q} 

= 0) ,  for prescribed M,,  n, using a straightforward Newton iterative scheme. Results 
for H, = 4 2  are shown in figures 1 (a )  (Q-a curve), 1 (b) (a-a curve) ; for M ,  = 5 in 
figures 2 (a )  (Q-u curve), 2 ( b )  (a-a curve) ; for M a  = 10 in figures 3 (a )  (Q-a curve), 
3(b )  (a-a curve). 

As with the axisymmetric case considered by Duck & Hall (1989), for fixed a less 
than a,, (the critical body radius above which the flow is stable) two possible modes 
exist. However, there is an important difference between this and the axisymmetric 
case, namely the behaviour of the ‘lower branch,’ which here has Q + O ,  a+O as 
a + 0, whilst in the axisymmetric case it is found that 51 -+ 00 , a + 00 as a -+ 0. 

Further observations regarding these n =# 0 results are 
1. as n increases, a, increases (indeed, all the a, determined here were greater than 

2. as M ,  increases, for n fixed, a, decreases; 
3. kinks were consistently observed on the upper branch of the a -a curve for the 

smaller value of n. 
In  figure 1, we have also shown (as broken curves) the lower and upper branches 

predicted by the asymptotic analysis of $4. We see that the asymptotic theory 
accurately predicts the neutral wavenumbers and frequencies over a wide range of 
values of a. A similar agreement is found for the higher Mach number cases but is not 
shown in the figures. 

Now let us turn to a matter of some practical importance ; namely the question of 
which mode is the most important in any given practical situation. There are two 
obvious ways to classify the ‘most dangerous ’ mode. First the high Reynolds number 
form of the neutral curve can be used to predict which mode becomes linearly 
unstable at the lowest value of the Reynolds number with the disturbance 
streamwise wavenumber held fixed. Figure 1 (a,  b)  shows that at a given value of a 
there is an infinite sequence of neutral values of a. The neutral value of a decreases 
with n so that a t  high Reynolds number the lower branch of the neutral curve for the 
mode with wavenumber Nl is to the left of that with wavenumber N, ifN, > N,. Thus, 
as with incompressible plane flows, this classification of the ‘ most dangerous ’ mode 
merely suggests that the importance of a mode increases with its azimuthal 
wavenumber. However, this classification takes no account of the different growth 
rates of the modes. Thus an alternative definition of the ‘most dangerous’ mode a t  
any values of a and M ,  is simply that with the largest growth rate. With the latter 

the a, obtained in the n = 0 case) ; 
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FIGURE 1 .  (a )  Neutral f2-a curve, (b )  neutral a-a curve; M ,  = 1 /2 .  

notion in mind we have shown in figure 4 the results of some non-neutral calculations 
for the case M ,  = 2 / 2  and a = 2 .  

The frequency D is taken to be real and when the corresponding complex value of 
the wavenumber a is calculated we see that the curves are unstable a t  frequencies 
between the two neutral values. Furthermore, the growth rates initially increase 
with n so that, a t  least a t  the values of a and M ,  chosen, the non-axisymmetric 
modes become progressively more unstable with increasing n. In  fact the most 
dangerous mode, i.e. the one with the largest growth rate, occurs for n = 6 for 
a = 2, M ,  = 2/2. 
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FIGURE 2. (a) Neutral 8-u curve, ( b )  neutral a-u curve; M ,  = 5. 

Similar calculations were performed a t  a finite number of points in the (a,M,)- 
plane. We were unable to perform calculations at a sufficiently larger number of 
points for us to identify the most dangerous mode everywhere. However, our 
calculations were sufficient to convince us of the following statements regarding the 
relative importance of the modes: 

1. for a given value of a the mode number of the most dangerous mode increases 
with M ,  ; 

2. the axisymmetric mode always has a smaller growth rate than one of the non- 
axisymmetric modes. 

Unfortunately there are no numerical results available for Tollmien-Schlichting 
waves in the configuration we have discussed. It is clear from our analysis that any 
numerical investigation should allow for the possibility of non-axisymmetric modes. 
Fortunately, unlike the planar case, only integer values of the wavenumber in the 
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FIQURE 3. (a )  Neutral 0- curve, ( b )  neutral a-a curve; M ,  = 10. 
(I 

cross-stream direction are physically acceptable so there is a selection mechanism to 
reduce the number of modes which must be considered in any numerical 
investigation. Our calculations suggest that experimentally it is almost certainly 
non-axisymmetric Tollmien-Schlichting waves that will be stimulated by an input 
disturbance of frequency appropriate to the triple-deck timescale. The question of 
which mode ‘wins’ the competition set up when the modes interact can only be 
answered by a nonlinear theory. Moreover the competition set up when other 
disturbances such as inviscid disturbances and Gortler vortices exist is again beyond 
the scope of the present calculation. 
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FIQURE 4. Spatial growth rates (a,), Q real, M ,  = 4 2 ,  u = 2, n as indicated. 
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